
GENIE Automated
Validation Suite

Gabriel N. Perdue
Fermilab

2014/September/11

Gabriel N. Perdue, Fermilab Simulations for Neutrinos

GENIE
• Generates Events for Neutrino Interaction Experiments.

• http://genie.hepforge.org

• Well-engineered C++ software framework built on sound OO-
principles and design patterns. (The Gang of Four is
omnipresent.)

• Propagates a flux of neutrinos (specified by function,
histogram, or ntuple) through a geometry (Geant4-
compatible) and simulates the initial interaction and
propagation of hard vertex products through the nuclear
medium. Geant4 takes over when particles leave the
nucleus.

• ROOT provides many core utilities. GENIE also heavily
leverages other HEP and FOS software - LHAPDF, GSL,
Pythia, log4cpp, etc.

2

Andreopoulos, C. and Bell, A. and Bhattacharya, D. and Cavanna, F. and Dobson, J. and others.
"The GENIE Neutrino Monte Carlo Generator". Nucl.Instrum.Meth. A614. 87-104. 2010.

http://genie.hepforge.org

Gabriel N. Perdue, Fermilab Simulations for Neutrinos

GENIE at FNAL
• GENIE is the primary event generator for:

• ArgoNeut

• LAr1-ND

• LBNE

• MicroBooNE

• MINERvA

• NOvA

• GENIE is also being considered for special
studies by MINOS and MiniBooNE (they use previous
generation software for their main generators).

3

Gabriel N. Perdue, Fermilab Simulations for Neutrinos

Software Dependencies

• GENIE uses ROOT (5, eventually 6), Pythia(6,
eventually 8), LHAPDF (5, eventually 6), log4cpp,
GSL.

• Libraries: libstdc++, libc, libgcc, linux-vdso,
libm, ld-linux-x86-64, libxml2 ... possibly not
complete (ROOT, etc. have requirements).

• GENIE does not (yet) use any features from C++11.

• Generally, building on Scientific Linux is easy.

• Building 32-bit is also possible.

4

Gabriel N. Perdue, Fermilab Simulations for Neutrinos5

> ./cloc-1.60.pl R-2_8_0/
 3285 text files.
 3200 unique files.
 7197 files ignored.

http://cloc.sourceforge.net v 1.60 T=113.14 s (11.3 files/s, 4119.1 lines/s)
--
Language files blank comment code
--
C++ 525 30478 37587 176349
XML 125 21895 2144 147176
C/C++ Header 504 9052 8118 22282
Perl 28 456 1469 3620
make 47 514 485 1651
Bourne Shell 34 157 334 1059
Bourne Again Shell 2 145 127 727
SQL 12 37 0 117
--
SUM: 1277 62734 50264 352981
--

There is a lot of configuration XML and experimental
data packaged for the validation framework.

http://cloc.sourceforge.net

Daniel Elvira; Soon Jun; Gabriel Perdue Simulations for Neutrinos

Basic Goals
• The goal is a "DC operation" with occasional spikes

around the time of a new release (twice annually):

• Nightly simple tests (build, unit tests)

• Weekly / Nightly (eventually... maybe faster)
integration branch full physics validation test

• The validation will grow in physics complexity over
time, but operational complexity should be ~flat.

• Each new validation app will have similar inputs/
outputs and interfaces.

• Push-button physics validations of the development
branch

• Global tuning (model variation, physics validation, fit
for optimal parameters) may require the OSG.

6

Gabriel N. Perdue, Fermilab Simulations for Neutrinos

Scripting Framework

• Six Stages:

• Build

• Unit Tests (Eventually)

• Generate Cross Sections (In: NA; Out: XML)

• Generate Physics Predictions (In: XML, Geometry, Flux; Out: ROOT Ntuples)

• Run Data/MC Comparison Apps (In ROOT Ntuples; Out ROOT Ntuples, PDFs)

• Compare outputs to previous data/MC comparisons / Study global behavior (In
ROOT Ntuples; Out ROOT Ntuples, PDFs)

• Each step depends on the previous step succeeding.

• We plan on using the Central Build Service to coordinate the flow from one stage
to the next, but each stage will have its own script.

7

Gabriel N. Perdue, Fermilab Simulations for Neutrinos8

ROOT, Pythia, etc.
CVMFS

Code

Worker
Node

Build & Unit Tests

Compute
Splines

Physics
Predictions

Comparison
Apps

Analysis

Code

Code

Code

Worker
Node

Spline

Flux,
Geometry

Ntuples

Worker
Node

Worker
Node

Ntuples
Plots

Plots

"Data"

(50 jobs)

(100 jobs)

(100 jobs)

(1 job)

(50 files, but
concatenate
into 1 - 12)

(O(100) files)

(O(100) files)

(O(10) files)

"Storage"

(Central Build Service Slave Node)

Gabriel N. Perdue, Fermilab Simulations for Neutrinos

Build
• Script in hand that does green-field builds

with minimal checks for previously installed
3rd party codes.

• Currently assumes x86_64.

• Not CVMFS aware.

• Bash. Willing to rewrite into Python - it is
missing some functionality anyway, e.g., how
to declare files to SAM, etc.

• Requires Git, wget, gcc 4.1+ (can probably
go lower), gfortran, Python (2.6?) for the
full stack (ROOT + Pythia6 + LHAPDF5).

9

Gabriel N. Perdue, Fermilab Simulations for Neutrinos

Generate Cross
Sections

• "Bootstrap Option": Keep a set of splines in /pnfs/data(?)
for testing other components of the scripting framework.

• Comparison: Store a complete set of splines from official
releases, the last X validation releases (where X is probably
one for automated comparisons).

• ~20-50 grid jobs if we do one job per target (could choose to
break up the Event Generator Lists).

• Output at this stage is ~20-50 x ~20 MB files, which could be
concatenated into a smaller set of files (or one file).

• One for free nucleons, one for each element (favorites:
He, C, O, N, Ar, Fe, etc. Minerva has ~20.).

• Jobs in the next stage must load the file, and the
inefficiency in loading unneeded cross sections is outweighed
by simpler coordination.

10

Gabriel N. Perdue, Fermilab Simulations for Neutrinos

Generate Physics
Predictions

• Each prediction is a unique snowflake.

• Like snowflakes though, very topologically
similar in terms of I/O requirements, etc.

• Requires the cross section spline and support
files: a flux and target specification (likely
to complicated, but small):

• e.g., the NuMI flux on the MINERvA geometry

• Sometimes very simple, e.g. 500 MeV electrons
on carbon

11

Gabriel N. Perdue, Fermilab Simulations for Neutrinos

Comparison
Applications

• Each application is a unique snowflake.

• Similar topologies...

• Requires a published data set and the
generator predictions file.

• Jobs should be very fast (unless they are
doing a complicated fit, etc.).

• Output is plots and ROOT files (histograms
and/or ntuples).

12

Gabriel N. Perdue, Fermilab Simulations for Neutrinos

Analysis Stage

• Vaporware.

• In principle, not difficult to write a very
basic placeholder that only does a few
simple things.

• Use the placeholder to design the I/O and
workflow, then add features using only
"physicist time."

13

